Стабилизаторы "Штиль"

Стабилизаторы "Штиль"

Стабилизаторы напряжения – это специальные устройства, которые обеспечивают безопасную работу различной электронной аппаратуры при провалах и всплесках сетевого напряжения. ГК «Штиль» предлагает стабилизаторы серии «ИнСтаб» – приборы нового поколения, разработанные по новейшим технологиям в области электропитания. 

Главной особенностью наших стабилизаторов напряжения является принцип действия – это двойное преобразование электроэнергии. Выпрямитель на входе создает из нестабильного переменного сетевого напряжения постоянное, а затем на выходе инвертор преобразует его снова в переменное с идеальным синусом и максимальной точность (±2%). Регулировка напряжения происходит мгновенно, без малейших задержек.

Преимущества стабилизаторов напряжения «Штиль»

Стабилизаторы напряжения активно используются как в быту, обеспечивая стабильное электроснабжение жилых помещений и загородных домов, так и в коммерции для надежной работы электроприборов в офисах, серверных или на производствах.

Внимание!
Применение стабилизаторов напряжения является обязательным для питания оборудования, чувствительного к перепадам напряжения, например, котлов отопления, медицинской техники, систем безопасности, серверов, морозильных камер, станков.

ГК "Штиль" выпускает модели однофазных и трехфазных стабилизаторов, имеющих выходную мощность в диапазоне 350 ВА-60 кВА, в различных конструктивах для бытового и коммерческого применения. Такая широкая линейка моделей инверторных стабилизаторов позволяет выбрать наиболее подходящий прибор для решения именно ваших задач.

Особенности стабилизаторов напряжения «Штиль»

Особенностями моделей инверторных стабилизаторов «Штиль» являются:

  • корпус из прочного металла;
  • встроенный автоматический и технический ручной байпас;
  • интуитивно понятная система индикации и управления;
  • система конвекционного, комбинированного (конвекционного/вентиляторного) или принудительного охлаждения;
  • широкий выбор коммуникационных интерфейсов для локального и удаленного мониторинга;
  • различные виды дополнительных аксессуаров, например, крепления для установки в рэковые стойки и дополнительные силовые блоки.

 Основные характеристики стабилизаторов напряжения

Девять основных параметров, которыми следует руководствоваться при выборе стабилизатора напряжения:

1. Фазность

Количество фаз указывает на тип сети, в которую может включаться стабилизатор, и на категорию нагрузки, которая может от него запитываться. С этого параметра следует начинать выбор стабилизатора.

Однофазные стабилизаторы предназначены для работы с однофазным входным напряжением и предусматривают подключение только однофазных потребителей. Трёхфазные стабилизаторы работают, соответственно, с трёхфазным входным напряжением, подключать к таким устройствам можно как трёхфазную, так и однофазную нагрузку.

В городских квартирах трёхфазная сеть, как правило, не используется либо используется только для электроплиты, в большинстве случаев не требующей стабильного электропитания. Следовательно, для обычной квартиры в черте города выбор чаще всего очевиден – однофазный стабилизатор.

В частных домах и загородных коттеджах трёхфазный ввод от питающей сети более распространён. В случае его наличия можно использовать как один трёхфазный стабилизатор, так и три однофазных (отдельное устройство на каждую питающую фазу). Вариант с тремя независимыми стабилизаторами позволит индивидуально подобрать и настроить прибор для каждой фазы, учитывая потребляемую от неё мощность и особенности подключенной к ней нагрузки. Кроме того, система из трёх стабилизаторов более устойчива к неполадкам, так как возникновение сбоя на одной из фаз не скажется на функционировании двух других. Стоит отметить, что и суммарная цена трёх однофазных стабилизаторов обычно меньше, чем одного – трёхфазного.

Главным минусом вышерассмотренного варианта является невозможность подключения мощных трёхфазных потребителей. Поэтому трёхфазный стабилизатор необходим при наличии даже одного работающего от трёх фаз устройства.

При подключении однофазных нагрузок к трёхфазной сети (через отдельные однофазные стабилизаторы или через единый – трёхфазный) все электроприёмники следует равномерно распределять между питающими фазами, иначе возможно возникновение в сети несимметрии токов и напряжений, негативно влияющей на электрооборудование. Исключить подобное явление помогут стабилизаторы топологии «3 в 1», имеющие трёхфазный вход и однофазный выход, что гарантирует идентичную нагрузку на все фазы трёхфазной сети при подключении однофазной нагрузки.

2. Мощность

Мощность стабилизатора зависит от его конструкции и определяет допустимую к подключению нагрузку. Чтобы определить необходимое значение данного параметра, необходимо посчитать суммарное энергопотребление всех устройств, которые планируется одновременно питать от стабилизатора. Для этого достаточно сложить указанные в их технических паспортах показатели потребляемой мощности и добавить к полученному значению запас в 30%.

Следует обратить внимание на приборы, в составе которых присутствует электродвигатель. В быту это, как правило, холодильник, стиральная машина, кондиционер, различный электроинструмент и насосы. Включение такого оборудования сопровождается возникновением высоких пусковых токов, обуславливающих кратковременный скачок потребляемой из сети мощности, показатели которой могут превышать номинальную в несколько раз. Поэтому при вычислении суммарного энергопотребления нагрузки, для каждого устройства с электродвигателем необходимо использовать не номинальное значение мощности, а предельное – пусковое (при отсутствии данных о пусковом значении – величину номинальной мощности, умноженную на три).

Распространённая ошибка связана с обозначением электрической мощности, которая для стабилизаторов обычно указывается в Вольт-Амперах (ВА), а для прочих электроприборов – в Ваттах (Вт). Покупатели часто не обращают внимания на единицы измерения, полагаясь только на численный показатель. При этом стабилизатор, имеющий выходную мощность в 500 ВА, не будет соответствовать нагрузке в 500 Вт.

Для подбора актуальной модели стабилизатора необходимо мощность предполагаемой нагрузки перевести из Ватт в Вольт-Амперы, поделив значение в Вт на коэффициент мощности – cos(φ). Величину cos(φ), соответствующую определённому устройству, можно найти в его технических характеристиках или в интернете. При отсутствии данных допустимо принять значение из типового интервала, составляющего для привычных нам бытовых электроприборов – 0,7-0,8 (для осветительной и нагревательной техники – 0,9-1).

3. Диапазон входного напряжения

Этот параметр измеряется в вольтах и определяет верхний и нижний порог сетевого напряжения, в пределах которого стабилизатор функционирует и питает нагрузку электроэнергией заявленного качества.

В многоквартирных домах перепады напряжения в сети редко превышают 20% от номинала – большинство современных стабилизаторов соответствуют данным требованиям и легко справляются с подобными колебаниями.

В случае выбора устройства для дома, расположенного за городской чертой, следует учитывать, что чем удалённее находится строение от крупных населенных пунктов, тем шире амплитуда встречающихся в нём скачков напряжения. Для большинства коттеджей требуются модели с границами входного напряжения не менее 130-270 В, а в ряде случае могут понадобиться стабилизаторы и с более широким диапазоном.

Для приобретения стабилизатора с диапазоном входного напряжения, максимально соответствующим колебаниям в электросети, необходимо измерить фактическое напряжение на месте будущей установки прибора. Замеры следует делать в разное время суток и в разные дни недели (желательно в выходные и в будни) – только так вы получите наиболее полную картину сетевых отклонений. При отсутствии навыков, позволяющих провести необходимые измерения самостоятельно, рекомендуем обратиться за помощью к профессиональному электрику.

Важно помнить, что диапазон входного напряжения у стабилизатора должен быть шире, чем амплитуда реальных колебаний в электросети. Также стоит отметить, что внутри допустимого диапазона входного напряжения присутствуют определённые границы, называемые рабочим диапазоном. Выход сетевых параметров за пределы рабочего диапазона сопровождается снижением выходной мощности стабилизатора, что может вызвать перегрузку устройства даже при номинальной нагрузке.

4. Точность стабилизации

Точность стабилизации или «погрешность» стабилизатора в процентном отношении указывает на величину возможного отклонения выходного напряжения устройства от номинального значения.

Современные стабилизаторы обеспечивают точность в пределах 10%. Зависит этот параметр, в первую очередь, от конструкции. Самой высокой точностью обладают инверторные модели, у которых данный показатель составляет 2%, что практически недоступно для полупроводниковых, релейных и электромеханических стабилизаторов. Столь высокая точность необходима для медицинского, измерительного или промышленного оборудования.

У большинства применяемых в быту электроприборов требования к качеству электропитания чуть ниже: они стабильно функционируют при отклонениях входного напряжения и в 7%. Однако отдельным устройствам всё-таки нужен более высокий показатель точности – это техника, работой которой управляет электроника (автоматические стиральные машины, кондиционеры), а также аудио- и видеоаппаратура, где от качества входного электропитания зависит чистота изображения и звука.

При покупке стабилизатора следует убедиться в том, что его точность соответствует величине допустимых для нагрузки отклонений питающего напряжения. Если потребителей несколько и они обладают различными требованиями к точности входного напряжения, то точность стабилизатора следует выбирать исходя из самого узкого диапазона допустимых колебаний.

5. Быстродействие

Эта характеристика измеряется в миллисекундах и определяет время, которое понадобится устройству, для того чтобы нейтрализовать скачок напряжения и подать на вход нагрузки электроэнергию с номинальными или наиболее близкими к номинальным параметрами.

Быстродействие – важный показатель уровня предоставляемой стабилизатором защиты. Чем выше быстродействие, тем ниже риск повреждения подключенного к прибору оборудования при перепадах сетевого напряжения.

Максимальным быстродействием обладают инверторные стабилизаторы, мгновенно (за 0 мс) отрабатывающие любые сетевые возмущения, что позволяет использовать данные аппараты для защиты абсолютно любого электрооборудования!

6. Принцип регулирования напряжения

Принцип регулирования сетевого напряжения определяет у стабилизатора форму выходного сигнала.

Приборы с дискретным (ступенчатым) регулированием не могут генерировать идеальную синусоиду, а именно такая форма переменного напряжения необходима для корректного функционирования чувствительной электроники, например – системы управления газового котла. Кроме того, ступенчатое регулирование обуславливает разрывы в электропитании, неминуемо возникающие при переключении порогов стабилизации.

Электромеханические стабилизаторы отличаются плавным регулированием – форма их выходного напряжения ближе к идеальной синусоиде, чем у электронных устройств. Однако электромеханические модели проигрывают приборам с дискретным регулированием в скорости срабатывания, которой иногда может не хватить для обеспечения качественной защиты современного оборудования.

Наиболее плавное регулирование присуще инверторным стабилизатором, только такие приборы гарантируют выходное напряжение в форме идеальной синусоиды и безразрывное электропитание нагрузки во всем допустимом диапазоне входного напряжения.

7. Способ установки

Существует три способа установки стабилизатора – настенный (навесной), напольный и стоечный. Первый подразумевает размещение на вертикальной плоскости (стене), второй – на горизонтальной поверхности (стол или пол), третий – в телекоммуникационном шкафу или стойке. Исполнение одних стабилизаторов допускает только какое-то определённое размещение, другие более универсальны – их можно устанавливать различными способами.

Выбирая стабилизатор, следует проанализировать помещение, в котором он будет эксплуатироваться, и подобрать модель, способ установки которой позволит поместить изделие с максимальным удобством как для подключения нагрузки, так и для обслуживания.

Важно помнить, что все стабилизаторы имеют предназначенные для вентиляции отверстия в боковых или нижних стенках. Следовательно, при установке стабилизатора нужно обеспечить зазор между указанными отверстиями и ближайшей поверхностью (не менее 20 см). Кроме того, не рекомендуется устанавливать стабилизатор на улице или в холодных, неотапливаемых помещениях, а также вблизи обогревательных приборов и в местах прямого падения солнечных лучей.

8. Габаритные размеры и вес

Габаритные размеры стабилизатора выбираются исходя из наличия свободного пространства на месте предполагаемой установки прибора. При размещении на поддерживающей конструкции (навесной полке) необходимо удостовериться, что вес стабилизатора не превышает значение нагрузки, допустимой для этой конструкции.

Следует понимать, что с увеличением мощности стабилизатора возрастают как его габаритные размеры, так и масса.

9. Средства индикации и мониторинга

Небольшим бытовым стабилизаторам достаточно иметь световую индикацию для сигнализации о различных режимах работы и дисплей для отображения информации об основных характеристиках прибора.

Для более мощных стабилизаторов, которые обычно применяются в промышленности и обслуживаются профессиональными специалистами, кроме вышеназванного необходимо также наличие поддерживающих различные каналы связи средств удаленного мониторинга.

Ваш город - Санкт-Петербург,
угадали?